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I.  Phys.: Condcns. Matter 5 (1993) 8689-8702. Printed in the UK 

Non-adiabatic non-linear impurities in linear hosts 
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t Computational Physics Laboratory, Depmment of Physics, University of North Texas, 
Denton, TX 76203. USA 
$ Superconducting Super Collider Laboratory. 2550 BecUeymead Avenue, Dallas, TX 75237, 
USA 

Received 29 June 1993 

Abstract. We study the dynamics of non-adiabatic Holstein-type impurities embedded in an 
ialinile linear chain. The impurities are modelled as Einstein oscillators coupled to specific sites 
of m iafinite one-dimensional tightbinding host. We present numerical evidence providing 
bounds for the onset of self-uapping that depend critically on the initial conditions of the 
oscillators. We show that, in general, s d l  but finite oscillator w e s  do not substantially 
chnnge the self-trapped character of the states. For intermediate as well as large oscillator 
masses self-trapping can still DCCW for some initial oscillator prepanrions. 

1. introduction 

One of the means of studying polaron formation and dynamics in deformable media 
is through the discrete non-linear Schrodinger (DNLS) equation or discrete self-trapping 
equation [1-3]. The cubic non-linearity terms in the DNLS equation can be seen to arise 
from an adiabatic-type approximation in the Holstein fomiulation of the complete polaron 
problem f2-41. In the present article we will lift the adiabatic assumption and address 
numerically the effects that non-adiabatic terms have in the particle dynamics when only 
a small number of such terms is present in the Harmltonian. More specifically, we study 
electronic propagation in the usual tight-binding approximation when one or more Holstein- 
type impurities are substituted in the linear one-dimensional host. The main motivation for 
this study comes from recent results in the ‘adiabatic’ regime that show enhanced electronic 
propagation in the presence of non-linear impurities [5 ] ,  in marked contrast with well known 
conventional substitutional impurity results 161. 

We are interested in studying the following set of equations: 

(2) 

where c,(t) is the electronic probability amplitude at crystal site m and U,@) is the local 
Einstein oscillator displacement coupled to the electronic level in the same site through the 
coupling coefficient CY. The intersite matrix element V connects the probability amplitudes 
of site m with its nearest neighbours, E, is the local electronic site energy and M and k 
are the mass and spring constant respectively, of the local Einstein oscillators. The sum on 
the RHS of the first equation runs over all impurity sites. Note that for M = 0 (antiabatic 
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Md2w,/dt2 + kw, = --ocIc,I 2 
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approximation) the local oscillators adjust instantaneously to the electronic presence and 
for n = m equations (1) and (2) reduce to the DNLS equation with non-linearity parameter 
x = a 2 / k .  In what follows, in order to simplify our calculations and the comparison with 
the DNLS results we will assume V = k = 1 and E, = 0. We are therefore left with two 
parameters to vary, viz. the non-linearity parameter x ( =  a’) and the inertial mass M of 
the Einstein oscillators. In the remainder of the article we will use these parameter values 
and study numerically the evolution that results from (1) and (2) when only a small number 
of Holstein impurities are present in the host. In section 2 we address the one-impurity 
problem; in section 3 we study the dynamics from two adjacent impurities embedded in the 
lattice; in section 4 we comment briefly on the three or more impurities and in section 5 
we conclude. We also have a number of analytical results that support the findings of this 
article: these are included in the appendix. 

2. One non-linear impurity 

We recently presented exact analytical results for the stationary states of the one-impurity 
problem in the DNLS equation [5]. In the context of ( I )  and (2), this case would correspond 
to M = 0 and n = r ,  where r is the (unique) impurity site. We found that there is no bound 
state at the impurity site for x 2. For x > 2, on the other hand, there is a well defined 
impurity state formed with energy equal to x .  The point at x = 2 is therefore a bifurcation 
point for the system, not dissimilar to that occurring in the stationary states of the non-linear 
two-site problem [l]. Since the dimer case is fully integrable [l], a complete study of the 
equations of motion for arbitrary initial conditions is possible [7]. As a result, we know that 
the dimer undergoes also a ‘dynamical self-trapping transition’ at x = 4. The latter occurs 
for a localized initial condition and it is rundamentally a manifestation (moderately modified 
by the different initial conditions) of the bifurcation in the stationary states that happens 
at x = 2. We can use these well known analytical results to argue that in the case of the 
non-linear impurity in the infinite chain, the existence of an impurity state for x = 2 signals 
the occurrence of dynamical self-trapping at larger x values. This dynamical bifurcation, 
even if not found analytically, is bound to occur because of the drastic phase-space change 
at x = 2. 

2.1. Impurig dynamics for M=O 

We performed extensive numerical simulations for one non-linear impurity embedded in 
the infinite tight-binding chain. We typically chose chains with one hundred sites (in some 
cases more than five hundred sites) and integrated numerically the differential equations of 
motion using a well tested fourth-order Runge-Kutta scheme. The natural unit of time is 
determined by V ,  which is taken to be equal to unity. We used a timestep equal to 0.002 
and a maximum integration time 2OC-1000. We used only one initial condition, viz. that 
which places the excitation initially in the impurity site r ,  and chose as the primary quantity 
of interest the time-averaged probability of the initially occupied (impurity) site, i.e. 

An earlier study of the timeaveraged probability (P) in the context of finite non-linear 
clusters showed that it is quite sensitive to the occurrence of self-trapping in the dynamics 
[SI. The numerical results from the calculation of (P) as a function of the non-linearity 
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parameter x are displayed in figure 1. We note the occurrence of a relatively abrupt change 
in the timeaveraged probability for a critical value xc of x approximately equal to 3.2. 
This value is compatible with that obtained by Dunlap et al [9] using an entirely different 
numerical approach. The full curve in figure 1 represents a fit to the numerical data by the 
following functional form: 

(P) = 41 - 1 / (~ ' / 3 .2 )~0(x '  - 3.2) (4) 
where x '  N 1.246~ - 0.0673 and 0 ( x )  is the step function. The functional form of the fit 
has been motivated by the exact results for Ic,Iz of [5]. A comparison of these two shows 
that the shape of the dynamical self-trapping indicator of figure 1 is given very well by the 
exact stationary state result of [5] only shifted in x by approximately 1.2. This 'delayed 
self-trapping' compared to the stationary problem is again similar to the dimer case and it is 
well understood physically since the stationary states describe the most stable configuration 
of the system. We note that there is a similar effect in the corresponding linear-impurity 
problem where, however, the connection between stationary and dynamic quantities is much 
simpler [6]. 

Figure 1. Time-averaged probability ar the non-linear impurity site as a function of the non- 
linearity panmeter x .  The points =present actual numerical data and the full curve is the 
fit to the data by the function of (4). Note the abrupt change in (P) signifying the onset of 
self-trapping. 

One of the important quantities that characterizes the self-trapped state is its average 
extent given by the localization length A. In order to find the asymptotic localization length 
for the states in the self-trapped regime, we perform long time simulations in large lattices 
with non-Hermitian (absorbing) boundary conditions. After the transients disappear, we are 
left with a localized state that has an approximately exponential (in space) shape around the 
impurity. We fit this localized state with an exponential and obtain a localization length for 
different values of the non-linearity parameter. These results as well as a fit to the obtained 
data are shown in figure 2. We also show, for comparison, the exact localization length 
obtained from the stationary-state analysis in the same non-linearity parameter range [5 ] .  
Note that, for a given x, the extent of the localized state derived from the stationary state 
analysis is smaller than that obtained dynamically. This is compatible with the fact that we 
need more non-linearity to self-trap dynamically rather than in a stationary sense. 
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Figure 2. Inverse localization length measuring the extent of the self-trapped state as a funnion 
of the non-linearity parameter x. The squares are numerical data obtained from the asymptotic 
shpc of the locdired state created alter an initial excitation at the impurity site. The broken 
line is a fitto these data whereas the full curve is the exact localization length for the stationary 
state derived in [SI. We nole lhat the localization length obtained from the stationary states is 
smallcr thm the corresponding dynamical ont. 

2.2. tmpuriry dynamics for M # 0 

After investigating the properties of dynamical self-trapping for one impurity in the limit 
of M = 0, we now come to the main issue of this article, viz. the modification of the self- 
trapping properties when the inertia of the local Einstein oscillator is taken into account. 
For initial conditions that populate only the impurity site, we solve the equations of motion 
numerically and evaluate (for long times) the time-averaged probability of occupation of 
the impurity site, viz. (P). The impurity oscillator starts initially from rest with a position 
determined by assuming complete oscillator relaxation. Since in the limit M + 0, the 
Holstein oscillator adjusts instantaneously to the presence of the electron at that site, it is 
natural to assume w,(O) = -U, at least in the small-M regime. Happily, this choice for the 
initial oscillator position renders the problem easily tractable via regular perturbation theory 
resulting in modified D M S  equations; this analysis is presented in the appendix. To lowest 
order in the (small) mass M we obtain the following modified equation for the electron that 
incorporates the effects of the finite oscillator inertia (AIO): 

idc,/dr = V(c,tt +cm-l) - [xlc,l2 - JjiM(d2/dr2)I~m121~,8,,,. (5) 

Note that the inertial effects enter through a second time derivative of the probability at the 
impurity site in a way that does not affect the stationary-state results of 151. 

We present our numerical results in figures 3 and 4. In figure 3(a) we show the time- 
averaged self-probability (P) as a function of the non-linearity parameter x for various 
values of the oscillator mass M. It is clear that the dynamical self-trapping transition 
does indeed survive the presence of a finite time-scale for the oscillator relaxation. We 
note that for small masses M the change compared to the DNLS case (M = 0) is very 
small. Self-trapping does indeed survive also for larger mass values and with mildly altered 
characteristics. This behaviour is compatible with the outcomes predicted by the exact 



Non-linear impurities in linear hosts 8693 

0 
0 2 4 6 8 10 x 

Figure 3. (a)  Time-averaged probability (P) at the impurity site as a functioo of non.linearity 
x for different oscillator masses. The oscillator starts from rest with w,(O) = -W. For s d l  
oscillator mass values the self-trapping curve is QraCti~dy indistinguishable from that for M = 0. 
t b )  Phase space of the impurity oscillator obtained every oscillator period for three differen1 initial 
conditions corresponding to three different non-linearity values. Regular oscillations occur in 
the trapped regime whereas at the hansition the oscillator motion is enatic. 

equation (3, derived in the limit of small inertial mass. In figure 3(6) we show a Poincare 
surface of section that depicts the phase space of the Einstein oscillator once every oscillator 
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period for the different cases corresponding to an untrapped electron, while at the transition 
and for a trapped electron respectively. The shifts of the equilibrium positions are caused 
by the non-linearity dependence of the initial oscillator position. Note that in the trapped 
case, the Einstein oscillator executes small-amplitude regular oscillations, whereas in the 
untrapped case the oscillator is 'squeezed' to a smaller position range. Finally, at the 
transition, the exchange between the two systems, viz. electron and oscillator, is erratic. 

Figure 4. (a) Time-averaged probability ( P )  as a function of non-linearity and oscillator initial 
velocity for M = 1. The range on the non-linearity axis is from zero to eight, to obtain the x 
value one needs to multiply the numbers an this axis by 0.4. The initial position chosen here 
is the 'natural' one with initial velocity values given by ( i  - l)/S, where i is a number on the 
'initial velocities' axis. Note that the onset of self-trapping is delayed as the initial velocity 
increases. ( b )  Timeaveraged prcbability ( P )  as a function of x for ~ ( 0 )  = 0 and wt(0 )  = 2. 
Note the 'emtic' behaviour for M = 0.01 and the disappearance of the transition for M = 1. 

In figure 4 we address the influence of the initial conditions of the oscillator on the 
dynamically self-trapped state. As noted in the appendix, for an initial oscillator position 
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other than that with ~ ( 0 )  = -CY (the ‘natural’ initial condition), the regular, perturbation 
expansion leading to (5) is not valid. This result is readily manifested in the numerical results 
of figure 4 .  In figure 4(a )  we fix the initial condition of the oscillator to be the ‘natural’ one 
and vary the initial momentum of the oscillator. As a result we obtain delayed self-trapping. 
In figure 4(b), on the other hand, we vary the initial position in addition to changing the 
momentum of the oscillator itself; we then see the dramatic effects that this change has 
on the self-trapped state, viz. it can disappear for large enough M .  Extensive simulations 
have shown that the mass value M N 0.01 marks the border past which oscillator initial 
condition effects become very important and the self-trapping @ansition can disappear. ,In 
general, for mass values smaller than approximately 0.01 we have self-trapping for most 
initial conditions whereas for larger masses we only have trapping for the natural initial 
condition. 

In the limit of large oscillator masses we can use the following modified equation (Al5): 

Note.that the effect of the large size of the oscillator mass enters as a time-dependent local 
site energy that contains all the local probability history convoluted in time. This term does 
not provide any assistance to self-trapping since in the time-scale in which it is effective, the 
much faster electron has already escaped in the crystal. Our numerical simulations confirm 
this tendency, viz. there is no self-trapping in the limit of large oscillator mass except for 
initial oscillator positions that are different from zero. The latter case, however, is trivial 
since this probability localization is a linear effect. 

3. Two non-linear impurities 

The numerical results from the study of the self-trapped properties of the two Holstein 
impurities placed in adjacent sites and embedded in the linear chain are shown in figures 5- 
7 .  We use again an initial condition that places the electron completely on one site of 
the two-site non-linear system with the corresponding oscillator starting from rest with the 
same displaced initial position as used in section 2. From figure 5 we observe that when the 
non-linear dimer ( M  = 0) is embedded in the infinite linear chain, dynamical self-trapping 
still occurs for a x value close to four. We note, however, the presence of a ‘precursor’ 
to this transition occurring for x values close to three. This behaviour arises from the 
single-impurity results discussed previously. For a particle placed initially on one of the 
two possible non-linear sites, the system does not have sufficient non-linearity for x < 4 to 
‘recognize’ its neighbouring site as a non-hear one and a self-trapped state compatible with 
only one non-linear impurity begins to form. Further increase of x, however, strengthens 
the participation of the initially non-occupied site and as a result probability flows from the 
initially occupied to the other non-linear site. Only for strong enough non-linearity does a 
genuine self-trapped state form for a x value close to the isolated dimer case [7]. For M # 0 
the situation does not change substantially for most mass values. We observe that for small 
masses the time-averaged probability is almost indistinguishable from the corresponding 
one for M = 0. We notice, however, that when the oscillator mass becomes very large the 
precursor phenomenon begins to disappear while, at the same time, the main self-trapping 
phenomenon remains. In figure 6 we present the actual time dependence of the evolution 
of the two non-tinear sites together with their sum, representing the total non-linear cluster 
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probability. Complete switching of the probabilities between the two sites occurs at x = 4 
(figure 6(b)). This is clearly a manifestation of the sensitive dependence of self-trapping on 
the participation of the rest of the crystal. Finally, in the limit of very large masses, with 
initial oscillators completely at rest, we observe no transition at all. This is compatible with 
the results obtained in the previous section for one impurity. In order to demonstate the 
sensitivity of the phenomena discussed on initial oscillator conditions we show in figure 7 
the average probability plot for the two-impurity case, when both oscillators are displaced 
equally. For small oscillator masses the changes compared with the previous case are 
minimal. However, as the oscillator mass exceeds a value M 2 0.01, the characteristics 
of the self-trapped state change substantially especially for larger non-linearity values. We 
note that, in addition to the windows of substantially reduced trapping, we have, for larger 
oscillator masses, complete destruction of the self-trapped state, at least for the non-linearity 
values displayed in figure 7. As the mass of the Einstein oscillators increases, the oscillator 
time-scale reduces and for M = 1 becomes identical to the electronic timescale. For 
this value, there seems to be a re-sonant coupling between the two subsystems leading to 
a substantial delay in the occurrence of localization. It is noteworthy that both cases of 
M = 0.1 and M = 100 lead to destruction of the localized state and escape of most of the 
initial probability to the linear lattice (at least for all non-linearity values shown in figure 6 )  
whereas for M = 1 self-trapping does indeed occur. The occurrence of ‘antitrapping 
windows’ as in the case of M = 0.01 is related to the sensitive dependence of the system 
on initial preparation as well as the resonant escape of probability from the non-linear cluster 
for some non-linearity parameter values. 

A 

!a 
V 

M = 0.1 
M = 10.0 

. ... . . . ..., 
-_-_- 

0 

Figure 5. Time-averaged probability ( P )  for the initizly occupied sib of a two-site non-linear 
cluster as a function of the non-linwity panmeter K for different oscillator mass values. The 
oscillator corresponding to the initidly occupied site is initially displaced. Self-trapping features 
do not change substantially from the M = 0 case. The c w e  for lhe l a m  is indistinguishable 
from lhat for M = 0.001. 
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0 . 8  

.., .. .. , 

60 80 Time 
Figure 6. Time dependence of the probability of both non-linear sites as well as their sum (total 
cluster probability) for M = 0.001. (a) x = 3 .6  both non-linear sites share approximately the 
same amount of probability. (b)  x = 4 almost all the cluster probability accumulates in the 
initinlly nan-accupied site. Full cuwes represent the sum of the impurity site probabilities, dotted 
curves the initially occupied site and broken curves the initially unoccupied site respectively. 

4. Many non-linear impurities 

We have also performed extensive simulations for small Holstein chains with three, four, 
etc consecutive impurity sites embedded in the infinite chain. We used initial conditions 
that place the particle initially either at one end of the impurity segment or in its centre. 
The largest value of x used was 20 and the largest oscillator mass was M = 100. For this 
range of values we observed that the tendencies realized in the dimer persist, viz. there is in 
general dynamical self-trapping for oscillators with finite inertia, especially when the latter 
is very small. The occurrence of self-trapping depends not only on the initial oscillator 
positions but also on which impurity site is initially excited (figure 8). For initial conditions 
different from the ‘natural’ ones, self-trapping ceases for mass values larger than 0.01, with 
the latter value being a borderline case as in  the two-impurity case. In the cases when self- 
trapping occurred, i.e. for mass values approximately less than 0.01, the transition occurred 
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Figure 7. lime-averaged pmbability of the initially occupied site as a function or x for a two-site 
system embedded in the chain. Both oscillators have been initially shifted equally. The self- 
Impping properties of the system change drastically for mass values larger than approximately 
0.01. 

for x N 4, a value that is compatible with the findings of [SI. The case of a cluster with 
three Holstein impurities is depicted in figure 8. 

A 

P 
" 

Figure 8. Tune-averaged self-trapping probabilily for a clustcr of three non-linear sites, When 
the cenhal site is initially excited the behaviour becomes enatic. The oscillator mass is M = 0.01 
and we displace the oscillator in the initially occupied site. 



Non-linear impurities in linear hosts 8699 

5. Conclusions 

We have presented a numerical study of the effects of finite inertia in the non-linear 
properties of DNLS-like impurities embedded in a onedimensional linear lattice. The 
motivation for this work was twofold (a) to address the issue of the survival of self-trapping 
in situations where the ‘antiabatic’ approximation has not been invoked and (b) to provide 
a framework for the further understanding of electron motion in substitutional disordered 
systems, when the impurities involve a strong local electron-phonon coupling. We modelled 
our impurities by simple Einstein oscillators and coupled them to the electronic problem 
with a linear coupling in the spirit of Holstein. We did not include damping, or stochastic 
fluctuations, as was done in earlier works in the context of the non-linear dimer model [IO]. 
By varying the mass of the Einstein oscillators we directly intluenced the time-scale of the 
vibrational subsystem relative to the electronic problem; this would not have been possible 
if damping and fluctuations had been added in the oscillator. For oscillator mass M = 0, 
we recover exactly the DNLS-like impurity embedded in the infinite chain, whereas as the 
oscillator mass becomes non-zero inertia effects come directly into play. The mathematical 
problem of such mass variation departing from the limit of M = 0 is, in general, addressed 
through singular perturbation methods; these, however, become exceptionally difficult for an 
undamped equation such as (2). Fortunately, the initial condition of fast lattice relaxation to 
an initially localized electron transforms the problem into one of regular perhubation, leading 
to an asymptotic series solution of (2). As a result, new modified DNLS-like equations for 
the one-impurity problem can be derived. For a small mass M, the lowest-order correction 
term is proportional to the second time derivative of the impurity site occupation probability 
(5). This equation is conspicuously similar to a modified NU equation derived in 121 in 
the context of the Davydov soliton problem. In the other oscillator mass limit, viz. for 
M + w, the oscillator system is infinitely slower than the electron system. The choice 
of.an appropriate initial condition for the oscillator, viz. that of complete initial rest in its 
equilibrium position, results, to the lowest order in 1 / M ,  in an equation that contains a time 
convolution correction term (6). 

The basic findings of this aritcle can be summarized as follows: (i) The self-trapping 
properties of the impurities depend strongly on the initial oscillator conditions. The ‘natural‘ 
initial conditions are, in the small-mass limit, those with an oscillator that starts from rest 
and is displaced due to the presence of the electron in that site. In the other extreme of 
large oscillator mass, the natural initial condition is that of an undisplaced oscillator. These 
initial conditions bypass the initial layer problem and give rise to modified equations for 
the electron, such as (5) and (6). (ii) For small mass M ,  dynamical self-trapping survives 
in the presence of finite inertia for one or more Holstein impurities embedded in a chain. 
The critical self-trapping values do not change drastically from that in the M = 0 case. 
The characteristic length scale .introduced by the presence of a localized state remains 
approximately the same with that in the M = 0 case. (iii) For initial conditions other than 
the natural ones (in the small-mass limit) the self-trapped state survives for oscillator mass 
values less than M 1: 0.01. For the latter value, the system behaves in an ‘erratic’ way with 
windows of antitrapping in the middle of the self-trapped region. For larger mass values 
self-trapping does not occur at all with one notable exception, viz. the region near M 2: I .  
In this regime the oscillator and electronic problems have identical frequencies and as a 
result there is self-trapping but for larger x values. (iv) Regular perturbation theory can be 
used to derive approximate modified non-linear ‘equations to study these phenomena. (v) 
When the oscillator mass is very large, initial conditions different than the natural ones (for 
that l i t )  show some probability localization. This is a purely linear effect resulting from 
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the effectively linear impurity that these initial conditions introduce in the lattice. Finally, 
we should point out that some of the present findings, viz. the survival of self-trapping for 
small oscillator masses, contradict results presented in [I 11 that address a similar, but not 
identical, problem. Additional work is necessary for complete understanding of the nature 
of the self-trapped states. 

Appendix 

When there is only one Holstein-type impurity at site m = r = 0 of the linear host, (1) and 
(2). using the conventions discussed previously, become 

where we designate the displacement of the Einstein oscillator with y. For M = 0, (AZ) is 
trivially solved and upon substitution into (Al) we recover the DNLS equation. In order to 
investigate analytically what happens for small but non-zero values of M we need first to 
solve (A2) in that limit. Let us designate M 3 E ,  where E is a small positive number and 
with y ( t ,  E )  the complete solution of (A2) that depends on the value of E :  

€dZy( t ,  E)/dP 3- y ( t ,  6) = F(f) z -filco(t)l2 ('43) 

It is straightforward to see that the solution of (A3) presents a singular perturbation 
problem excepr for the unique initial condition y(0) = F(0). \Ve can see this from the 
exact solution of (A3) for the case of y'(0) = 0, i.e. 

y ( t , < )  = p ( 0 ) c o s L + l S 1 d t ' s i o ~ F ( t f ) .  t - f' 
f i  f i o  

After some trivial reorganization, (A4) can be rewritten as 

with F'(t)  being the time derivative of F(r). We note that in the limit E -+ 0, the integral 
terms in (A5) average out to zero (except under very singular circumstances not realizable 
in our problem) and we are left with the following terms: 

Thus, for y(0) = F(O), as E approaches zero, y( f ,&)  --* y ( t , O ) ,  for all t and for this 
exceptional initial condition there is no need to worry about the initial layer problem [IZ]. 
We note that the aforementioned initial condition is the 'natural' one since it corresponds 
physically to an infinitely fast relaxation of the lattice to the presence of the initial excitation 
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at site m = 0. We can now use regular perturbation theory and express the solution of (A3) 
with an asymptotic series expansion of powers of E 1121 

Direct substitution of (A7) into (A3) leads to a set of equations (with their corresponding 
initial conditions) for different orders in E .  For E = 0 we recover 

yo@) = F ( t )  SO(0) = F(0)  = -& yL(0) = 0 (A81 

whereas to order E’,  for I z 0, we have 

Y;’+ y1-1 = 0 YI (0 )  = Yi(0) = 0. ( A 9  

To lowest order then in E ,  (Al) then becomes 

idc,/dt = V(C,,,+I + cm-d - [xIcm12 - fi6(d2/dt2)lcml2 + . . . I c ~ ~ ~ . o  ~. W O )  

where the additional terms are higher-order (even) derivatives of the probability at site m, 
each entering at a higher order in E .  For a small impurity mass E,  the contribution to 
the local site energy of the additional term on the RHS of (AlO) is quite small, especially 
since it involves the second derivative of a relatively slowly varying function. In light of 
this, it is clear why the self-trapping properties of the one-impurity problem do not change 
substantially for small masses, as was shown in section 2.2 (figure 3). On the other hand, 
when the initial conditions of the Einstein oscillator change, the critical values for dynamical 
self-trapping vary considerably. These values are directly influenced by the singular aspect 
of the initial layer problem for the oscil!ator that becomes effective for initial conditions 
different than the ‘natural’ one. These effects are manifested predominantly in the two- or 
more-impurity problems. 

Let us now briefly discuss the opposite oscillator limit, i.e. when the mass A4 becomes 
very large. Denoting M = 1/6, with 6 small, (A2) becomes 

dZy(t,6)/dt2 + S y ( t ,  6 )  = 6 F ( t )  E - G J j r l ~ o ( t ) l ~ .  ( A l l )  

When 6 = 0, the time-scale of the electron is infinitely faster than that of the oscillator and 
the solution of (AI 1) is hivial. For an oscillator initially at rest we simply have y ( t )  = y(0). 
Substitution of this solution back into (Al) leads to a completely linear electron problem 
with one Linear defect with local energy proportional to y(0). As a result, in this limit, 
linear trapping occurs [6] for y(0)  # 0. However, since it takes an infinite amount of time 
for the information of the presence of an initially localized electron to pass to the oscillator, 
it is natural to assume that in this regime y(0) = 0. Thus, an infinitely ‘sluggish’ oscillator 
initially at complete rest does not affect the motion of the electron. For 6 small but non-zero 
we can use an asymptotic expansion in 6, similar to that of (A7) and obtain 

y;(t) = 0 yo(0) = 0 yL(0) = 0 ( A W  

y f + y o = F ( t )  Y I ( o ) = Y ; ( O ) = o  (A131 

y; + yl-1 = 0 (A 14) yl(0) = y;(O) = 0 for 1 p 2. 
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After solving (A12) and (A13) and substituting into (A2) we obtain to lowest order in 8 

We note that the effect of the finite mass of the Einstein oscillator appears now to be a 
convolution in time of the site probability that modifies the ‘impurity’ term of (A15) by 
including the complete history of the electronic probability at that site. From a comparison 
of (A10) and (A15) we observe the different nature of the correction terms arising from the 
finite value of the oscillator mass in the two extremes. When the oscillator is fast compared 
to the electron, the lowest-order correction is proportional to the second time derivative of 
the impurity site probability whereas in the opposite l i t  of slow oscillator-fast electron 
the correction enters as a convolution over the entire history of the impurity probability. 
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